There have been progressive developments within basic and clinical research to identify candidate biomarkers of ischemia and to develop simple to use assays. Any such assay needs to have similar analytical (limit of detection, precision, reference intervals) and clinical performance (sensitivity, specificity, risk stratification and predictive value) compared to that of markers of necrosis, such as high sensitivity cardiac troponin assays. A number of candidate biomarkers have been identified. However very few make it from a research grade assay to a fully licenced automated assay for clinical use. The most promising biomarkers to date are reviewed below. Of these, Ischemia Modified Albumin has been the most successful biomarker and greater attention is given to this marker.
Malondialdehyde low density lipoprotein
Malondialdehyde low density lipoprotein (MDA-LDL) is a sensitive biomarker for ACS patients with unstable angina and AMI. MDA is a candidate compound which causes oxidative modification of LDL. MDA (propanedial, C3H4O2) is a reactive aldehyde produced by degradation of polyunsaturated lipids or released during prostanoid metabolism. This reactive oxygen species causes oxidative modification to LDL. MDA-LDL reacts with the charged amino group of B-100 protein lysyl residues. Plasma concentrations of MDA-LDL identify patients with coronary artery disease. Modified LDL may also instigate an immune response leading to autoantibody and LDL immune complex production. MDA-LDL not only serves as an oxidative stress marker but as a marker of plaque destabilisation.
Source :: http://www.intechopen.com/
Malondialdehyde low density lipoprotein
Malondialdehyde low density lipoprotein (MDA-LDL) is a sensitive biomarker for ACS patients with unstable angina and AMI. MDA is a candidate compound which causes oxidative modification of LDL. MDA (propanedial, C3H4O2) is a reactive aldehyde produced by degradation of polyunsaturated lipids or released during prostanoid metabolism. This reactive oxygen species causes oxidative modification to LDL. MDA-LDL reacts with the charged amino group of B-100 protein lysyl residues. Plasma concentrations of MDA-LDL identify patients with coronary artery disease. Modified LDL may also instigate an immune response leading to autoantibody and LDL immune complex production. MDA-LDL not only serves as an oxidative stress marker but as a marker of plaque destabilisation.
Source :: http://www.intechopen.com/